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Abstract. The method of two-point Pad6 approximants is used to interpolate between the 
low-temperature and high-temperature behaviour of the thermodynamic partition function 
of a quantum system. The system is assumed to have low-lying discrete energy levels which 
dominate the low-temperature behaviour. A method of successive approximation is intro- 
duced, which allows more infc-mation from both regions to be included at each step. 
Other thermodynamic quantities can be calculated either by an extension of the method, 
or by differentiating the approximations found for the partition function. 

The method is applied to three simple systems (the harmonic oscillator, the rigid 
rotator, and the particle in a box) and shown to give good results for all temperatures. 

1. Introduction 

A quantity of fundamental importance in statistical mechanics is the thermodynamic 
partition function 

Q = Tr e-PH. ( 1 . 1 )  
Here, H is the Hamiltonian of the system and j3 = l /kT In terms of the energy 
eigenvalues E, this becomes 

Q = g, e+€n, 
n 

where gn is the degeneracy of the nth level. Once Q has been found the other 
equilibrium thermodynamic functions of the system can be derived by application of 
the standard formulae of statistical mechanics (Huang 1963). 

Q has been found in closed form in only a few special cases. Thus much effort has 
been expended on developing approximation techniques. Usually these work well only 
for certain systems, or in limiting situations. Two such limits are those of low tem- 
perature (low T )  and high temperature (high T ) .  The low-T limit is particularly 
simple for a quantum system which possesses low-lying discrete energy levels which 
are reasonably well separated. In this case, the first few terms of (1.2) give the dominant 
behaviour, and the problem is reduced to that of finding the energy of the ground 
state and of the first few excited states. In the high- T region, the dominant behaviour 
is that of the corresponding classical system. Quantum mechanical effects are then 
added as corrections to this behaviour. (For references to recent work on semiclassical 
methods see Korsch (1979).) 
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Our approach is to try to bridge the gap between these two regions by making 
simultaneous use of the information available from each. The technique employed is 
that of two-point PadC approximants, in which a rational function is made to reproduce, 
to specified orders, series expansions about zero and about infinity (see the appendix). 
This method has recently been applied to the third virial coefficient for quantum hard 
spheres (Gibson 1980, 1981). In the present case, straightforward application of the 
Pad6 method is not possible because Q does not have an expansion in powers of T 
as T + 0. However, we have developed a method of successive approximation which 
allows at each stage a two-point PadC approximant to be fitted. At the first stage the 
input is the ground-state energy plus high- T data which may be as little as the classical 
limit of Q. At each successive approximation we add one more energy level, and one 
(or more) high-T quantum correction terms. The details for the partition function 
are given in 0 2.1, and in 0 2.2 we extend the method to cover other thermodynamic 
quantities. 

To illustrate the method we apply it to three simple, though rather different, 
systems: the harmonic oscillator, the rigid rotator and the particle in a hard-wall box 
(cf Stratt and Miller 1977, Korsch 1979). Since the aim of these examples is elucidation, 
we restrict ourselves to one particle in one dimension. Also, we do not consider the 
effect of quantum statistics-that is, our formulae are valid for Boltzmann statistics only. 

2. Successive approximation method 

2.1. Partition function 

We consider a quantum mechanical system which has discrete energy levels 
Eo, El, E2, . . . ordered so that Eo< El < E 2 .  . . . We assume that the first few energy 
levels are reasonably well separated, so that at low T (large p )  the dominant contribu- 
tion to the partition function comes from the first few terms: 

In writing (2.1) we are not excluding the possibility that the system also has a continuous 
energy spectrum, but rather we are specifying that it does have discrete states which 
dominate the low- T behaviour. 

At high T (small p ) ,  the exact form of Q depends on the nature of the system, 
the interactions present, the boundary conditions, etc, but in general an expansion 
exists of the form 

Q - p ’(ao + alp’ + a2p2” + . . . ), P + O ,  (2.2) 

where v, p > 0 are constants, and ao, al, at,. . . are independent of temperature. For 
a system of particles interacting through a potential which is differentiable an arbitrary 
number of times, the Wigner-Kirkwood (w) expansion applies (Wigner 1932, Kirk- 
wood 1933, Hill 1968, Fujiwara et a1 1982). The coefficients in this expansion are 
functions of p, and these must be expanded to get a series of type (2.2). If in addition 
the potential has bounded derivatives to all orders the series is simply in powers of p, 
and the coefficients can be obtained directly (Perelomov 1976, Onofri 1978, Hasslacher 
and Neveu 1979, Wilk et a1 1981). In other cases (for example, if discontinuous 
potentials are present) special techniques have to be used. 
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We now wish to fit a Pad6 approximant to Q, using the leading terms of (2.1) and 
(2.2). This cannot be done directly because (2.1) does not have an expansion in powers 
of P- ' .  We therefore use the following approximation procedure. For the first 
approximation we define 

where = Ei -Ej The smal1-P behaviour of Q1 is found by inserting the series (2.2) 
into equation (2.3). Expanding the exponential, multiplying the two series, and making 
a change of variable p = up where p > 0 is an appropriate integer, leads to 

Q 1 - u q ( Y o + Y i u + Y z u 2 + .  . u + o .  (2.5) 

Here, q is an integer and -yo, yl, y 2 , .  . . are combinations of the ai's and Eo. We now 
fit a two-point Pad6 approximant (in the variable U) to Q1, using just the leading term, 
go, of (2.4), and as many terms as we wish from (2.5) (see the appendix). We have 
thus neglected terms which are exponentially small compared with go. 

From (2.3) and (2.1), 

o1 - go - g, e-pEl,o+ g2 e-pE2.0+. . . , (2.6) 

o2 = esE1,o( - go). (2.7) 

Q2 = gl + O(e-PE2.1). (2.8) 

p + m .  

This is of the same form as (2.1) and so, repeating the above procedure, we define 

Then 

Using (2.2) and expanding the exponential in (2.7) leads to a series of the type (2.5) 
for Q2, so the Pad6 method can again be applied. Clearly, this process can be repeated: 
at the nth step we define 

Q n  = ~ X P (  PE n - I ,  n -2) ( Q n  - 1 - gn-2  ) 3 (2.9) 

Q n  = g n - i  +O[exp(-PE,n-i)I, P + w ,  (2.10) 

n >  1. 
Then 

and Q, has an expansion of type (2.5) as P + 0. 
Thus at each step we include one more term from the low-T series (2.1) in the 

approximation. We have a choice as to how many terms we will use from the high-T 
series (2.2)-using more terms will increase the accuracy of the Pad6 approximant in 
the high- T region, but, as will be seen below, the best results are achieved by keeping 
a balance between the inputs from the high- T and low- T expressions. 

2.2. Thermodynamic quantities 

Once the partition function has been found, other thermodynamic quantities follow 
by application of the standard formulae. For example, the internal energy is 

E = -(d/aP)(ln Q)v  (2.11) 

Cv/ k = PZ(d2/aP2)(ln Q)v. (2.12) 

and the heat capacity is 
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Thus successive approximations to these quantities can be found by differentiating the 
approximations to Q. 

An alternative procedure is to calculate the low-T and high-T series for the 
particular thermodynamic quantity, and then to apply an approximation scheme similar 
to that used for Q in the previous section. For example, for the internal energy we 
find from (2.1), (2.2) and (2.11), 

E - Eo+ (g,/go)E1.0 exp(-PE,,o) + (g,/go)E2,0 exp(-PE2,0) 
- (gl/go)2El,o exp(-2PE,,o) + ' f * t P + w ,  (2.13) 

E - -vp-' - (pal/a0)ppL-'  +[p('z:-  2 a o a 2 ) / a ~ J p 2 p - '  +. . . , p+O. (2.14) 

These are of a similar form to (2.1) and (2.2), and the successive approximation method 
can easily be modified to handle them. 

2.3. Discussion of the method 

There are two essentially separate aspects to our approximation scheme. The first is 
contained in the sequence Q1, Q2, Q 3 , .  . . . There is no problem here; provided Q 
exists, so does Q, and the two are simply related by 

Q = go e-%+ g, e-% + , . . + g,-2 e-pEn-2 + e-PEn-1 Q,. (2.15) 

This shows that using even the simplest approximation for Q,, namely Q, = g,-,, will 
give a Q which becomes increasingly accurate in the low-T region as n increases. 

The second aspect involves finding an approximation for Q, which goes beyond 
this simple form, and this is where the Pad6 approximants enter. We supplement the 
limit 

Q, + g n - i  asp-,oo (2.16) 

by a series of the form 

Q, - uq(yh+ y ; u +  y ; u 2 + .  . . ) (2.17) 

where U = p 1 I P + O ,  and fit a Pad6 approximant which reproduces (2.17) for small U 
and has the asymptotic form (2.16) as u+w. 

We now wish to say something about the convergence of the Pad6 scheme. In spite 
of much recent work on Pad6 approximants (Baker 1975, Baker and Graves-Morris 
1981, Jones and Thron 1980, Gilewicz 1978, Wuytack 1979, de Bruin and van Rossum 
1981) precise and useful statements about convergence can only be made in a limited 
number of cases. These include where the function being approximated is of a special 
type (e.g. a Stieltjes function), or where one possesses complete information about its 
analytic structure. 

In the present case we have only a limited amount of information. From (2.15) it 
is clear that Q,( p )  has the same analytic structure as Q( P ) .  Assuming that the original 
series (1.2) for Q ( P )  converges for p real and positive, it follows that it is uniformly 
convergent for complex p with Re p > 0, and thus defines a function analytic in this 
region. Also Q ( P )  has an essential singularity at p = w. As a function of U = p"P,Q( p )  
is analytic in the sector larg U \  < ~ / 2 p  and has an essential singularity at U = 00. 

In the general case it does not seem possible to say anything about the analytic 
continuation of Q ( P )  outside this region. (In specific cases we may be able to say 
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more-for example, for the simple harmonic oscillator, considered in detail in 9 3, Q(P) 
is analytic in the entire P plane except for simple poles along the imaginary axis.) 

Some rigorous results concerning Pad6 approximants also exist for the case where 
the function is represented by a Taylor series with a finite radius of convergence. But 
in our case, again with certain exceptions such as the simple harmonic oscillator, the 
series (2.17) will be asymptotic with a zero radius of convergence. This does not 
preclude the use of Pad6 approximants, but limits the applicability of general theorems. 

In general, Pad6 approximants attempt to reproduce the analytic structure of a 
function by a suitable distribution of poles and zeros (Baker and Graves-Morris 1981, 
9 2.2). Poles of the function will be represented by poles of the approximant, and the 
positions of these will tend to stabilise as we go to higher order approximants. Essential 
singularities appear as a clustering of poles and zeros about a point, and branch cuts 
are represented by a line of roughly alternating poles and zeros. In practice, as well 
as these ‘real’ poles, Pad6 approximants also have ‘spurious’ poles. Often these occur 
in the form of zero-pole pairs which almost cancel each other. (Such pairs are called 
defects.) These spurious poles can be recognised by their unstable nature; they tend 
to appear and disappear, or to move about more or less at random, as we proceed 
along a sequence of approximants, whereas the real poles settle down at stable locations. 
In general it is best to reject, or at least to treat with suspicion, any Pad6 approximant 
with spurious poles in the region of interest. 

Thus the information that Q , ( P )  is analytic for Re P > 0 is actually very useful: 
we should select a sequence of Pad6 approximants with no poles in this region, or at 
the very least keep well clear of any such poles when calculating numerical values. 

The above considerations apply equally well to one-point and two-point Pad6 
approximants. The main effect of using two-point Pad6 approximants is that they 
change the natural region of convergence from that of a disc centred on the origin to 
that of a more general region including the two points (Baker 1975, § 11H). In 
practice, we find that using the two-point approximant has the very desirable feature 
of forcing unwanted poles out of the region of analyticity and thus dramatically 
increasing the reliability and accuracy of the approximant. (This feature is illustrated 
by the case of the rigid rotator treated in 0 4 below.) 

We remark that two-point Pad6 approximants are closely related to the type of 
continued fractions known as T-fractions (Jones and Thron 1980). There are a number 
of results concerning the convergence of these fractions, but they rely on establishing 
certain properties of the general term, and so are not useful in our case since in general 
we can only evaluate the first few terms. 

The above considerations suggest the following practical way of proceeding. (Com- 
pare Baker and Graves-Morris 1981, § 2.2.) As many Pad6 approximants are calculated 
as is possible with the available coefficients. For each, we find the location of the poles 
and zeros (and it is useful also to evaluate the residues so that defects are immediately 
apparent). For this purpose one must have the explicit form of the numerator and 
denominator of the approximant, and this is a good reason for solving the defining 
equations directly (see the appendix), rather than employing an algorithm which gives 
only numerical values at specified points, or using a continued-fraction approach. We 
then reject those approximants with poles in the region Re p > 0, and evaluate the 
rest for a range of real values of p in order to check their numerical convergence. In 
doing this, we pay particular attention to intermediate values of p, since by their 
construction the approximants must tend to the correct values for small and large p. 
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3. Harmonic oscillator 

3.1. Partition function 

We consider a single particle of mass m moving in one dimension under the harmonic 
oscillator potential 

(3.1) 

E,=(n+$)hw, n = 0 , 1 , 2  , . . . .  (3.2) 

In terms of the dimensionless parameter f = p h o  the high-T and low-T expansions 
are, respectively, 

2 2  V(n) =$mm x . 
The energy levels are 

Q = l / t - t / 2 4 + 7 t 3 / 5 7 6 0 + .  . . , t+0,  (3.3) 

+. . . ,  t+a. (3.4) Q = e- t /2  + e-3r/2 + e-51/2 

In (3.3),  the terms are the classical partition function, and the first and second WK 

corrections. Series (3.4) can of course be summed explicitly to give 

Q = $ cosech( t/2) (3.5) 

and then (3.3) is obtained from the standard expansion for cosech (Abramowitz and 
Stegun 1965), the complete series being 

Qz-2  (22”-1 - 1)B2,( 
,=o (2n)! (3.6) 

This is convergent for O < J t l < 2 ~ ,  in accord with the fact that, from ( 3 . 9 ,  Q has 
simple poles at r = 2 kTi, k = 0, * 1,  . . . . We note also that t = cc is an essential singularity 
of Q. 

The most straightforward approximation procedure would be to ignore series (3.4),  
and simply fit a one-point Pad6 approximant to Q- l / t  using (3.3). This works well 
in the neighbourhood of t=O; in fact Montessus’ theorem (Baker 1975) ensures 
convergence of [LIM], as L + a ,  in the region ( t l  s p where p < ( M + 2 ) v .  However, 
because convergence is based on circles centred on the origin, we need high-order 
approximants to get reasonable accuracy for larger values of t. 

In order to obtain approximations useful for all values of t we implement the 
scheme of 0 2.1. For the first approximation we define 

Q1 = erl2Q. (3.7) 

Q1 = 1 + O(e-‘), t+a (3.8) 

Q1 = l / t + 1 / 2 + O ( t ) ,  t + 0 .  (3.9) 

Then 

and, using only the first term of (3.3), 

Fitting a [1/1]  Pad6 approximant to these series leads to 

(3.10) 

(3.8) gives a maximum error of about 8% when compared with the exact expression 
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(3.5). This agreement is satisfactory, considering that the input to (3.10) is merely 
the ground-state energy and the classical limit of the partition function. Using more 
terms from the high- T series (3.3) has the predictable effect of increasing the accuracy 
at high temperatures without improving the low-temperature behaviour. 

Thus we proceed to the second approximation, which uses the first two energy 
levels and the classical limit plus first WK correction term. This gives 

Q ~ (3.11) 

Now the accuracy is better than 0.1% over the entire temperature range. In figure 1 
the high-T and low-T curves use the first two terms of (3.3) and (3.4) respectively, 
and thus represent the input to the approximation (3.11). The full curve is the exact 
partition function, which on the scale of the graph is indistinguishable from (3.11). 

f -' 
Figure 1. Partition function for the harmonic oscillator as a function of temperature. The 
full curve is the exact result (3.5). The high-T and low-T curves are the first two terms 
of ( 3 . 3 )  and (3.4) respectively. 

The next approximation, which includes E2 and the second WK correction, is 

t 360+60t+12t2+t3 1 ' Q L1 e- r /2+e-3f /2+e-5r /2  1 1 8 0 + 6 0 t + l l t 2 + t 3  
(3.12) 

This is now accurate to at least five significant figures for all temperatures. Table 1 
shows numerical values of the first three approximations for selected temperatures, 
and illustrates the convergence of the scheme. 

In all the above approximations the poles of the Pad6 approximants lie in the left 
half t plane and thus cause no problems. If we wished to locate accurately the poles 
of Q we would use one-point Pad6 approximants fitted to (3.3),  as discussed above. 
The effect of using two-point PadC approximants is to displace the poles off the 
imaginary axis into the left half plane, and cause them to converge more slowly to 
their true positions. 

Our procedure is very similar to the original application of the two-point PadC 
approximant by Baker et a1 (1964); they also used the value at an essential singularity 
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Table 1. Comparison of different approximations to the partition function for the 
harmonic oscillator. I, 11 and 111 are from equations (3.10), (3.11) and (3.12) respectively. 
EXACT is from (3.5). ( - n )  means the corresponding entry is to be multiplied by lo-". 

1-' I I1 111 EXACT 

0.1 6.850 25 (-3) 6.738 25 (-3) 6.738 25 (-3) 6.738 25 (-3) 
0.5 4.59849 (-1) 4.251 35 (-1) 4.254 60 (-1) 4.254 59 (-1) 
1 .o 1.010 88 9.592 20 (-1) 9.595 18 (-1) 9.595 17 (-1) 
2.0 2.024 88 1.979 22 1.979 32 1.979 32 
5.0 5.017 73 4.991 67 4.991 68 4.991 68 

at infinity to fix the asymptotic behaviour of the Pad6 approximant and thus improve 
convergence over the entire range. Similar cases have also been considered by McCabe 
(1975). 

3.2. Thermodynamic quantities 

We have calculated the internal energy by both methods outlined in § 2.2-that is, by 
differentiation using (2.1 l ) ,  and by deriving series for E and forming the successive 
approximations. Both methods give comparable results, with differentiation being 
slightly superior. Convergence is a little slower than in the partition function case, 
but the third approximation still gives five-figure accuracy. 

A more stringent test is supplied by the heat capacity, and here it is found that the 
differentiation method is definitely superior. The high-T and low-T series for Cv/ k,  
derived from (2.12), (3.3) and (3.4), are 

C,/ k = 1 - At2 + &jt4 + O( t 6 ) ,  t + O ,  

Cv/k =t2e- '+2t2e-2r+O(e-3 ' ) ,  t+m.  

(3.13) 

(3.14) 

The best approximation we can derive from these is 

CV/ IC = t2  e-' + e-2r 1 + 2t + t2  
0.916 667+0.415 240t+0.104 103t2+0.015 332t3 

1 +0.271 171t+0.059 718t2+0.007 666t3 
(3.15) 

This gives less than four-figure accuracy, whereas inserting (3.12) into (2.12) and 
performing the differentiations gives about five figures. Table 2 compares these two 

( 

Table 2. The heat capacity C,/ k for the harmonic oscillator. A is from (3.15); B is from 
(2.12) and (3.12); EXACT is from (3.16). 

t -  ' A EXAC? 

0.1 4.540 40 (-3) 4.54042 (-3) 4.540 41 (-3) 
0.5 0.723 825 0.724 043 0.724 062 
1 .o 0.920 624 0.920 677 0.920 674 
2.0 0.979 422 0.979 425 0.979 425 
5.0 0.996 613 0.996 673 0.996 673 
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approximations with the exact result 

C,/ k = at2 cosech2 it. (3.16) 

The reason for the superiority of the differentiation method can be seen by 
comparing figures 1 and 2. The full curve in figure 2 is the exact heat capacity; the 
high-T curve uses the first two terms of (3.13) and the low-T curve uses the first term 
of (3.14). Thus the input for figure 2 is the same as for figure 1, but the asymptotic 
curves do not approximate the true curve as well as they do in figure 1. It is thus no 
surprise that the approximation method works better for the partition function. 

101 I I I I I I I I 

t -1 

Figure 2. Heat capacity for the harmonic oscillator as a function of temperature. The full 
curve is the exact result (3.16). The high-T curve is the first two terms of (3.13); the 
low-T curve is the first term of (3.14). 

4. Rigid rotator 

For a rigid rotator with moment of inertia I the energy levels are 

E,=(h2/21)1(1+1), 1 = 0 , 1 , 2 , .  * .  . (4.1) 

Q = C (21+ 1) exp[-d( l+ I)], (4.2) 

Since the fth level has degeneracy 21 + 1, the partition function is 
CE 

1 =o 

where U = ph2/21. At low temperature the behaviour of Q is determined by the first 
few terms of this series. The high-T behaviour can be found by application of the 
Euler-Maclaurin summation formula, and is (Mulholland 1928, Kilpatrick et a1 1965) 

Q = I / u  +++A(+ +&a2+&a3 +&u4 + O(a5) ,  U + O .  (4.3) 

In contrast to the simple harmonic oscillator case, this series has a zero radius of 
convergence and Q-l/o is singular at o = O .  (This series is discussed at length by 
Kilpatrick and Kayser (1975). They derive the general term and also show that the 
series can be converted to a convergent one by multiplying each power of U by an 
infinite series of terms of the form f m  exp(-.rr2k2/u) where m and k are positive 
integers.) 
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As in the simple harmonic oscillator case, we start by fitting a one-point Pad6 
approximant to Q - l/u, using (4.3). This is now completely unsatisfactory; the 
approximants have poles which lie close to the origin on the positive real axis, and 
thus are virtually useless for computational purposes. This difficulty cannot be over- 
come by going to higher order approximants-in fact this just moves zero-pole pairs 
along the positive real axis closer to the origin. 

We therefore implement the two-point Pad6 scheme of 0 2.1, which in lowest order, 
using one term from (4.2) and two from (4.3), gives 

1 1 + 2 u  
U 3 + 2 u  

Q=-+-. (4.4) 

The pole is now at U = -2 and is quite harmless. The same behaviour persists if we 
use four terms from (4.3); the poles are still in the left half plane, at approximately 
-2.213k4.936i. But if we use six terms from (4.3), still using only the leading term 
from (4.2), there is now a ‘bad’ pole at ~ ~ 3 . 0 1 7 .  As we include more terms from 
(4.3) more poles appear on the positive real axis. Thus the effect of going from a 
one-point to a two-point Pad6 approximant has been to force poles into the left half 
plane, but this effect becomes weaker as we include more terms of (4.3). Thus it is 
vitally important to keep a balance between the number of terms used from each of 
the series (4.2) and (4.3), and one way to check this balance is to find the location of 
the poles for each approximant evaluated. 

Keeping this in mind, we give two further approximations, using two terms from 
(4.3) for each term from (4.2): 

1 + 12 880+ 15 704u+ 11 0730.’ 
U 9660+6465u+3691u2 (4.5) 

1 +2.333 333+3.2044230+2.932 241u2+ 1.536 821u3 
Q = 1 + 3 e-’“ + e-6m - 

( U  1 +0.487 610u+0.647 921u2+0.307 364u3 
(4.6) 

The poles are all in the left half plane. The numerical values of Q calculated from 
(4.4), (4.5) and (4.6) have maximum errors of, respectively, l6%, 0.9% and 0.01%. 
Thus convergence is good, though not quite as fast as for the harmonic oscillator. 

5. Particle in a box 

For a particle of mass m in a box of length a the energy levels are 

E, = (1/2m)(77-h/a)’n2, n = l , 2 , 3  , . . . ,  (5.1) 

and so the partition function is 

a2 

Q =  n = l  exp(-n2a2u2), (5.2) 

where U = ( h / a ) (  /3/2m)”’. Again, the first few terms of this series describe the low-T 
behaviour. Application of the Poisson sum formula (Carrier et a1 1966) yields the 
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high- T expansion 

(5.3) 

The form of this series is different to that of the previous cases, due to a finite number 
of inverse powers and the explicit presence of exponential terms. However, at 
sufficiently high temperatures, these are negligible compared with the first two terms 
of (5 .3) ,  and so we take the asymptotic behaviour to be 

The method of 0 2.1 can now be applied, and the results for the first three approxima- 
tions are 

(5.6) 
1 1 -15+8.rr3”u 

Q =exp(-.rrzu2)+exp(-4.rr2~z) 
10+87r3’2u 

Q = exp( - d u 2 )  + exp( - 4 ~ ’  u2) 

). (5.7) 
1 1 +-2.5+6.250 7 0 0 ~ + 4 . 5 0 9  1 5 9 ~ ’  

+exp(-9.rr2u2) - - 
(2& U l+7 .522  710u+4.509 159u2 

These have all their poles in the left half plane, and the maximum errors in Q are, 
respectively, 30%, 1.5% and 0.2%. Thus again convergence is satisfactory, if not as 
good as for the harmonic oscillator. 

6. Conclusion 

We have shown how to apply the method of two-point Pad6 approximants to the 
calculation of the partition function and other thermodynamic quantities of a quantum 
system. The input to the method is very basic-the first few energy levels, and the 
high- T semiclassical behaviour-and for many systems is known either precisely, or 
to high accuracy. The approximation takes place in the fitting, and by doing this in 
systematic successive stages we have a check on the convergence of the method. 

It is not possible to rigorously justify the method, in the sense that we can prove 
that the Pad6 scheme will converge in all cases. (Such rigour is achieved in very few 
applications of Pad6 approximants.) But the information that Q( p )  is analytic in the 
half plane Re p > 0 provides a valuable guide for the selection of appropriate sequences 
of approximants. In the cases we have studied this analyticity condition can be satisfied 
by keeping a balance between the input from the low-T and the high-T series for Q. 

In this first paper we have treated only very simple systems-the method should 
be applicable in much more complex cases. However, it is important to show that it 
works well for these simple systems before attempting to apply it elsewhere. In 
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particular, it is reassuring to find that it works without modification for the particle in 
a box, since systems involving abrupt discontinuities can cause trouble with other 
approximation schemes (Stratt and Miller 1977, Stratt 1979, Korsch 1979). 

The two-point Pad6 method gives results which are very accurate in the high- T 
and low-T regions. The maximum error occurs in the medium temperature range, 
but even here it is not excessive (at least for the cases we have studied). This is in 
contrast to many other approximation schemes (particularly semiclassical ones), which 
can be very accurate in one region, but become increasingly inaccurate as one moves 
away from that region, and eventually give even the wrong qualitative behaviour. An 
advantage of the present method is that the approximation is constrained to have the 
correct behaviour at both of its extremities. Provided the quantity we are approximating 
has a reasonably smooth behaviour, this would seem to give the best chance for overall 
accuracy. 

Of course there are limitations to the method. As stated in 0 2.1, a requirement 
is that the system have low-lying discrete energy levels which are reasonably well 
spaced, so that the low-T behaviour of the partition function is determined by the 
leading terms of (2.1). Thus the scheme will not be useful for large systems, and 
certainly not in the thermodynamic limit, where Q will have quite a different low-T 
behaviour. 

In this paper, the harmonic oscillator has been treated at some length, both as an 
illustration of the method, and also as the prototype for the quartic and anharmonic 
oscillators. These will be considered in a second paper (Gibson 1984). 

Appendix. Two-point Pade approximants 

Two-point Pad6 approximants were first explicitly introduced by Baker er a1 (1964). 
A number of references to subsequent work can be found in Gibson (1981). A 
systematic fitting procedure is outlined by Isihara and Montroll (1971), but appears 
to be unnecessarily complicated. Thus it seems worthwhile to state the method we use. 

Consider the case where f ( x )  has expansions in x and x- l  about zero and infinity 
respectively. We first remark that it is always possible, by elementary manipulations, 
to relate f ( x >  to a function F ( x )  with the expansions 

F ( x ) - a o + a , x + a 2 x 2 + .  . . , x + o ,  

F ( x ) - b o + b 1 x - ’ + b 2 ~ - ~ + .  . . , x + w ,  

where a, # 0, but any number of bo, b,, . . . can be zero. We then fit F ( x )  to an [ N / N ]  
Pad6 approximant: 

po+p1x+. . .+p ,xN 
l+q1x+.  . .+q,x” 

F ( x )  = [ N / N ]  = 

This does not mean a restriction to diagonal approximants. We allow the possibility 
of any number of pN, pN-l, .  . . being zero, so in effect we are fitting an [ M / N ]  
approximant, where M 6 N. 

Suppose there are I +  1 terms in ( A l )  and m + 1 in (A2), where I+ m is odd. We 
can then fit an [ N / N ]  Pad6 approximant, where 2 N  = 1 + m + 1. Requiring (A3) to  
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Po = a0 

p1= a1 + aoq, 

p2 = a,+ a,q,  + a042 
\ 

This pattern is continued for 1 + 1 equations, with the convention that pr = 0 and qr = 0 
if r >  N. 

Similarly, from the large-x behaviour we get the m + 1 equations 

P N - 2  = bOqN-2+ blqN-l+ b24N 9 ( ' 4 5 )  I P N  = bOqN 

P N - I =  bOqN-l+blqN 

where again pr = 0 and q, = 0 if r > N. We now have a total of 2N + 1 equations in 
the 2N + 1 unknowns po,  I . . , pN, q l , .  . . , qN. These can be solved analytically for small 
N, or numerically using a standard linear systems solver for large N. 

Thus the whole procedure is purely mechanical, and one does not even have to  
decide on the order of the Pad6 approximant in advance. Simply specifying the 
coefficients ao,. . . ,a l ,  bo,. . . , b, uniquely determines the outcome. 
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